
BRICS
Basic Research in Computer Science

There and Back Again

Olivier Danvy
Mayer Goldberg

BRICS Report Series RS-05-3

ISSN 0909-0878 January 2005

B
R

IC
S

R
S

-05-3
D

anvy
&

G
oldberg:

T
here

and
B

ack
A

gain



Copyright c© 2005, Olivier Danvy & Mayer Goldberg.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/05/3/



There and Back Again ∗

Olivier Danvy

BRICS †

Dept. of Computer Science
University of Aarhus ‡

Mayer Goldberg

Dept. of Computer Science
Ben Gurion University §

January 2005

Abstract

We present a programming pattern where a recursive function defined over
a data structure traverses another data structure at return time. The idea is
that the recursive calls get us ‘there’ by traversing the first data structure and
the returns get us ‘back again’ while traversing the second data structure.
We name this programming pattern of traversing a data structure at call
time and another data structure at return time “There And Back Again”
(TABA).

The TABA pattern directly applies to computing symbolic convolutions
and to multiplying polynomials. It also blends well with other programming
patterns such as dynamic programming and traversing a list at double speed.
We illustrate TABA and dynamic programming with Catalan numbers. We
illustrate TABA and traversing a list at double speed with palindromes and
we obtain a novel solution to this traditional exercise. Finally, through a va-
riety of tree traversals, we show how to apply TABA to other data structures
than lists.

A TABA-based function written in direct style makes full use of an
ALGOL-like control stack and needs no heap allocation. Conversely, in a
TABA-based function written in continuation-passing style and recursively
defined over a data structure (traversed at call time), the continuation acts
as an iterator over a second data structure (traversed at return time). In
general, the TABA pattern saves one from accumulating intermediate data
structures at call time.

∗With apologies to Tolkien.
Extended version of an article to appear in Fundamenta Informaticae.
A preliminary version was presented as a functional pearl at ICFP 2002 [6].
†Basic Research in Computer Science (www.brics.dk),
funded by the Danish National Research Foundation.
‡IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark. E-mail: danvy@brics.dk
§Be’er Sheva 84105, Israel. E-mail: gmayer@cs.bgu.ac.il

i



Dear Reader:

Before proceeding any further, could you first spend a few minutes
thinking about the following three programming exercises?

Computing a symbolic convolution:
Given two lists [x1, x2, ..., xn−1, xn] and [y1, y2, ..., yn−1, yn], where
n is not known in advance, write a function that constructs

[(x1, yn), (x2, yn−1), ..., (xn−1, y2), (xn, y1)]

in n recursive calls and with no auxiliary list.

Detecting a generalized beta-redex:
Given the abstract-syntax tree of a lambda-term, determine
whether this term is a generalized beta-redex

(...(((λx1 .λx2. ... λxn.e) e1) e2) ... en)

where n is not known in advance, in n recursive calls and with
no counter.

Detecting a palindrome:
Given a list of length n, where n is not known in advance, de-
termine whether this list is a palindrome in dn/2e recursive calls
and with no auxiliary list.

Thank you.

ii



Contents

1 Symbolic convolution 1

2 List reversal 3

3 Polynomial multiplication 4
3.1 Convolving successive suffixes . . . . . . . . . . . . . . . . . . . . . 4
3.2 Convolving successive prefixes . . . . . . . . . . . . . . . . . . . . . 4
3.3 Memory usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 Detecting a generalized beta-redex 5
4.1 A TABA solution in direct style . . . . . . . . . . . . . . . . . . . . 6
4.2 The TABA solution, CPS-transformed . . . . . . . . . . . . . . . . 6
4.3 The TABA solution in CPS, defunctionalized . . . . . . . . . . . . 7
4.4 Changing the representation of the data-structure continuation . . 7

5 The Catalan numbers 8

6 Detecting palindromes 9
6.1 A CPS solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
6.2 A direct-style solution . . . . . . . . . . . . . . . . . . . . . . . . . 10
6.3 Variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

7 Traversing binary trees 11
7.1 Traversing a tree at call time . . . . . . . . . . . . . . . . . . . . . 12
7.2 Traversing a tree at return time . . . . . . . . . . . . . . . . . . . . 12

8 Conclusion 14

iii



1 Symbolic convolution

Symbolically convolving the two lists [x1, x2, ..., xn−1, xn] and [y1, y2, ..., yn−1, yn]
yields the list [(x1, yn), (x2, yn−1), ..., (xn−1, y2), (xn, y1)]. Graphically:

x1 x2 · · · xn−1 xn

y1 y2 · · · yn−1 yn

Numeric convolutions are used, e.g., to multiply generating functions [10, Sec-
tion 5.4], and they have occurred very early in the history of mathematics [16].
Computing a symbolic convolution is straightforward in a functional programming
language such as Standard ML; it is achieved by zipping the first list together with
the reverse of the second list, using no accumulator, or equivalently by reversing the
first list and zipping the result together with the second list, using an accumulator.
We present the second solution below:

(* cnv1 : ’a list * ’b list -> (’a * ’b) list *)

fun cnv1 (xs, ys)

= let (* walk : ’a list * ’a list -> (’a * ’b) list *)

fun walk (nil, a)

= continue (a, ys, nil)

| walk (x :: xs, a)

= walk (xs, x :: a)

(* continue : ’a list * ’b list * (’a * ’b) list *)

(* -> (’a * ’b) list *)

and continue (nil, nil, r)

= r

| continue (x :: a, y :: ys, r)

= continue (a, ys, (x, y) :: r)

in walk (xs, nil)

end

This definition induces a compiler warning about non-exhaustive pattern matching,
but this warning is not alarming since the two input lists should have the same
length. (In a version of ML with dependent types [21], the type of cnv1 would be
∀n ∈ N . α list(n)× β list(n) → (α× β) list(n).)

Two iterations are performed—one to reverse the first list (walk above) and
one to traverse the resulting reversed list and the second list (continue above). In
addition, walk constructs an intermediate list.

Can we do better, i.e., can we traverse each list only once and construct no
intermediate list? Similar issues have motivated the study of fusion and deforesta-
tion [3, 9, 19].

In the present case, we observe that cnv1 is in defunctionalized form [8, 15]: the
data type of the intermediate list and continue represent a function. In the higher-
order counterpart of cnv1 (shown just below), the first list is traversed (walk below)

1



while building a list iterator (the second parameter of walk below). On reaching
the end of the first list, the list iterator is applied to the second list and to the
initial value of an accumulator to traverse the second list and construct the result:

(* cnv2 : ’a list * ’b list -> (’a * ’b) list *)

fun cnv2 (xs, ys)

= let (* walk : ’a list * (’b list * (’a * ’b) list *)

(* -> (’a * ’b) list) *)

(* -> (’a * ’b) list *)

fun walk (nil, k)

= k (ys, nil)

| walk (x :: xs, k)

= walk (xs, fn (y :: ys, r) => k (ys, (x, y) :: r))

in walk (xs, fn (nil, r) => r)

end

Defunctionalizing walk in cnv2 yields walk in cnv1 [8, 15]. Figuratively speaking,
traversing the first list explicitly winds up a list-traversal spring and this spring is
unwound over the second list.

This higher-order solution is reminiscent of the call-by-value version of Bird’s
famous repmin function [2], where a function is constructed inductively while a
tree is traversed and eventually applied to an integer to construct the result [12].
In contrast to repmin, however, the function constructed inductively by walk is
eventually applied to a list and traverses it during the construction of the result.

We observe that walk is written in continuation-passing style (CPS), since it
threads a higher-order accumulator and all of its calls are tail calls. There is,
however, nothing intrinsic to CPS about it, and therefore we can write it in direct
style. The resulting function traverses the first list at call time and the second list
at return time:

(* cnv3 : ’a list * ’b list -> (’a * ’b) list *)

fun cnv3 (xs, ys)

= let (* walk : ’a list -> ’b list * (’a * ’b) list *)

fun walk nil

= (ys, nil)

| walk (x :: xs)

= let val (y :: ys, r) = walk xs

in (ys, (x, y) :: r)

end

val (nil, r) = walk xs

in r

end

CPS-transforming walk in cnv3 yields walk in cnv2 [5]. Figuratively speaking, the
calls to walk implicitly wind up a list-traversal spring and the returns unwind it
over the second list.

This direct-style solution only allocates storage to construct the result, and
all its intermediate results are held on the control stack if one uses a direct-style
implementation of a derivative of ALGOL 60 such as Chez Scheme (http://www.
scheme.com) or OCaml (http://www.ocaml.org).

2



Overview: The rest of this article further illustrates the TABA programming
pattern of traversing one data structure at call time and another at return time, in-
cluding trivial calls in Section 2, multiple returns in Section 3, and a tree traversal
in Section 4. We combine the TABA programming pattern with dynamic pro-
gramming to compute Catalan numbers in Section 5, and with traversing a list at
double speed to detect palindromes in Section 6. Finally, we illustrate TABA with
binary trees in Section 7.

2 List reversal

It is immediate to write a self-convolution using the TABA programming pattern.
This self-convolution can be simplified into a recursive version of the reverse func-
tion that completely traverses the input list at call time and then re-traverses it
at return time, constructing the result:

(* taba_rev : ’a list -> ’a list *)

fun taba_rev xs

= let (* walk : ’a list -> ’a list * ’a list *)

fun walk nil

= (xs, nil)

| walk (_ :: xs)

= let val (x :: xs, r) = walk xs

in (xs, x :: r)

end

val (nil, r) = walk xs

in r

end

In this degenerate version of the reverse function, the only purpose of the calls to
walk is to reach the end of the input list, through a series of successive end-of-list
tests. This list is then blindly re-traversed while returning. If we duplicate the
end-of-list tests from the calls to the returns, the purpose of the calls disappears
and we can optimize away the “tail-returns:”

(* taba_rev_opt : ’a list -> ’a list *)

fun taba_rev_opt xs

= let (* walk_return : ’a list * ’a list -> ’a list *)

fun walk_return (nil, r)

= r

| walk_return (x :: xs, r)

= walk_return (xs, x :: r)

in walk_return (xs, nil)

end

The result is the traditional version of reverse with an accumulator.

3



3 Polynomial multiplication

Multiplying polynomials together requires their coefficients to be convolved. In-
deed multiplying a0 + a1x + a2x

2 + ... + anxn by b0 + b1x + b2x
2 + ... + bnxn yields

c0 + c1x + c2x
2 + ... + c2nx2n, where ci =

∑i
j=0 ajbi−j and ak = bk = 0 when-

ever k > n. Polynomial multiplication is similar to integer multiplication without
carry:

an an−1 an−2 . . . a2 a1 a0

× bn bn−1 bn−2 . . . b2 b1 b0
anb0 an−1b0 an−2b0 . . . a2b0 a1b0 a0b0

anb1 an−1b1 an−2b1 an−3b1 . . . a1b1 a0b1
anb2 an−1b2 an−2b2 an−3b2 an−4b2 . . . a0b2

.

..
.
..

.

..
.
..

.

..
anbn−2 . . . a4bn−2 a3bn−2 a2bn−2 a1bn−2 a0bn−2

anbn−1 an−1bn−1 . . . a3bn−1 a2bn−1 a1bn−1 a0bn−1

anbn an−1bn an−2bn . . . a2bn a1bn a0bn

c2n c2n−1 c2n−2 . . . cn+2 cn+1 cn cn−1 cn−2 . . . c2 c1 c0

We observe that each of cn, ..., c2n results from convolving the successive suffixes
of [a0, ..., an] and [b0, ..., bn], and that each of c0, ..., cn results from convolving the
successive prefixes of [a0, ..., an] and [b0, ..., bn].

3.1 Convolving successive suffixes

The successive suffixes of a list are accessed by traversing this list, and they are
easy to collect in another list. Accordingly, convolving the successive suffixes of
two lists of length n is straightforwardly achieved by traversing the two lists side by
side in n(n+3)/2 recursive calls (n calls for traversing the two lists and n(n+1)/2
other calls for convolving the successive suffixes), with no auxiliary lists:

(* suffixes : ’a list * ’b list -> (’a * ’b) list list *)

fun suffixes (xs, ys)

= let (* walk : ’a list * ’b list -> (’a * ’b) list list *)

fun walk (nil, nil)

= nil

| walk (xs, ys)

= (cnv3 (xs, ys)) :: (walk (tl xs, tl ys))

in walk (xs, ys)

end

3.2 Convolving successive prefixes

The successive prefixes of a list can be accessed with the successive continuations
of a copy function, and these prefixes can be collected in another list by applying
these successive continuations to the empty list [4].1 Accordingly, a simple variant
of cnv2 in Section 1 makes it possible to list the symbolic convolutions of the
successive prefixes of two lists of length n in n recursive calls and n(n + 1)/2
returns, with no auxiliary lists:

1“You can enter a room once, and yet leave it twice.” – Peter J. Landin

4



(* prefixes : ’a list * ’b list -> (’a * ’b) list list *)

fun prefixes (xs, ys)

= let (* walk : ’a list * (’b list * (’a * ’b) list *)

(* -> (’a * ’b) list) *)

(* -> (’a * ’b) list list *)

fun walk (nil, k)

= (k (ys, nil)) :: nil

| walk (x :: xs, k)

= (k (ys, nil)) :: (walk (xs, fn (y :: ys, r)

=> k (ys, (x, y) :: r)))

in walk (xs, fn (_, r) => r)

end

The definition of walk is not in CPS since two calls to the continuation k are not
in tail position (which is why we can return n(n+1)/2 times with only n recursive
calls). One can still write walk without k, i.e., in “direct style,” if one uses the
delimited-control operators shift and reset [1, 5].

3.3 Memory usage

In the definition of prefixes, all the continuations are passed as arguments and
never returned as results. In Lisp jargon [17], they are ‘downward funargs’, and
prefixes can indeed be written in ALGOL 60 and in Pascal, i.e., using no auxiliary
heap space.

Therefore, putting prefixes and suffixes together, we can multiply polyno-
mials in a way that uses no auxiliary heap space at all. (Furthermore, in the
terminology of partial evaluation [11], this definition is binding-time separated
and therefore ready to be specialized with respect to its first argument.)

4 Detecting a generalized beta-redex

We want to write a function detecting whether a given lambda-term is a generalized
beta-redex

(...(((λx1.λx2. ... λxn.e) e1) e2) ... en)
where n is not known in advance. The function should proceed in n recursive calls
and should use no counter.

The TABA programming pattern suggests a solution where the applications
are traversed at call time and the lambda-abstractions are traversed at return
time. Using Wand’s continuation-based program-transformation strategy [20], we
can then derive the obvious iterative solution that uses a counter. Wand’s strategy
consists of three steps:

1. CPS-transforming a program,

2. devising a data structure to represent the continuation, and

3. changing this data structure to improve the efficiency of the program.

5



In practice, Wand’s second step is achieved with defunctionalization [8, 15], and
accordingly we use defunctionalization below. (In retrospect, we can see that we
have used Step 2 and then Step 1 in Section 1.)

We represent the abstract syntax of lambda-terms with the following data type:

datatype exp = VAR of string

| LAM of string * exp

| APP of exp * exp

4.1 A TABA solution in direct style

A term is a generalized beta-redex if it consists of n nested applications where
the leftmost innermost term is a (curried) lambda-abstraction expecting at least n
arguments, for some n. Using the TABA programming pattern, we write a function
that traverses the nested applications at call time and that traverses the nested
lambda-abstractions at return time. We use the option data type to account for
terms that are not generalized beta-redexes:

datatype ’a option = NONE

| SOME of ’a

(* detect_beta_redex : exp -> bool *)

fun detect_beta_redex (APP (e, _))

= let (* visit : exp -> exp option *)

fun visit (VAR _)

= NONE

| visit (LAM (_, e))

= SOME e

| visit (APP (e, _))

= (case visit e

of (SOME (LAM (_, e’)))

=> SOME e’

| _

=> NONE)

in case visit e

of (SOME _)

=> true

| NONE

=> false

end

| detect_beta_redex _

= false

Instead of the option data type, we could use a local exception.

4.2 The TABA solution, CPS-transformed

We CPS-transform detect beta redex, short-circuiting the option data type. The
local function visit is now passed a term and a continuation that is only applied
if the term is well-shaped:

6



(* detect_beta_redex_cps : exp -> bool *)

fun detect_beta_redex_cps (APP (e, _))

= let (* visit : exp * (exp -> bool) -> bool *)

fun visit (VAR _, k)

= false

| visit (LAM (_, e), k)

= k e

| visit (APP (e, _), k)

= visit (e, fn (LAM (_, e’))

=> k e’

| _

=> false)

in visit (e, fn _ => true)

end

| detect_beta_redex_cps _

= false

4.3 The TABA solution in CPS, defunctionalized

We defunctionalize detect beta redex cps by representing its continuation as a
data structure with two constructors. The first constructor accounts for the initial
continuation, and the second for the continuation in the recursive call to visit.
The constructors are interpreted with an apply function.

fun detect_beta_redex_cps_def (APP (e, _))

= let datatype cont = C0

| C1 of cont

fun apply (C0, _)

= true

| apply (C1 k, LAM (_, e’))

= apply (k, e’)

| apply (C1 k, _)

= false

fun visit (VAR _, k)

= false

| visit (LAM (_, e), k)

= apply (k, e)

| visit (APP (e, _), k)

= visit (e, C1 k)

in visit (e, C0)

end

| detect_beta_redex_cps_def _

= false

4.4 Changing the representation of the data-structure con-
tinuation

We observe that the data type cont just above implements Peano numbers. Making
it implement native integers gives an iterative function that uses a counter (and is
exponentially more efficient):

7



fun detect_beta_redex_cps_def_opt (APP (e, _))

= let fun apply (0, _)

= true

| apply (k, LAM (_, e’))

= apply (k-1, e’)

| apply (k, _)

= false

fun visit (VAR _, k)

= false

| visit (LAM (_, e), k)

= apply (k, e)

| visit (APP (e, _), k)

= visit (e, k+1)

in visit (e, 0)

end

| detect_beta_redex_cps_def_opt _

= false

In this optimized solution, the applications are iteratively traversed by visit and
the nested lambda-abstractions are iteratively traversed by apply.

5 The Catalan numbers

The Catalan numbers are recursively defined as follows [10]:

C0 = 1
Cn = C0Cn−1 + . . . + CkCn−k−1 + . . . + Cn−1C0

This specification fits the TABA programming pattern: given a list [C0, ..., Cn−1],
one computes Cn with a numeric self-convolution.

We can define a function computing Catalan numbers using course-of-values
induction, i.e., iteratively building a list of intermediate Catalan numbers in reverse
order. The result reads as follows.

(* catalan : int -> int *)

fun catalan m

= let (* cat : int list -> int *)

fun cat a

= let (* walk : int list -> int * int list *)

fun walk nil

= (a, 0)

| walk (n :: ns)

= let val (n’ :: ns’, r) = walk ns

in (ns’, r + (n * n’))

end

val (nil, r) = walk a

in r

end

8



(* iterate : int * int list -> int *)

fun iterate (i, a)

= if i > m

then hd a

else iterate (i + 1, (cat a) :: a)

in iterate (1, [1])

end

The local function iterate builds an intermediate list of Catalan numbers [..., C2,
C1, C0]. Given such an intermediate list, the local function cat yields Cn if the
intermediate list starts with Cn−1. It traverses this list using the TABA pattern
(and could be written using foldr instead of walk).

We could even take advantage of the symmetry in the definition of Cn above
to traverse the first half of the intermediate list at call time (winding up a list-
traversal spring), and to traverse the second half at return time (unwinding the
spring).

An analogy: convolving the two halves of a list of even length. The
following function takes a list and its length n, which must be even, and yields a
convolution of its first and second halves. It does so in only n/2 calls:

(* cnv_halves : ’a list * int -> (’a * ’a) list *)

fun cnv_halves (xs, n)

= let (* walk : int * ’a list -> (’a * ’a) list *)

fun walk (0, xs)

= (xs, nil)

| walk (n, x :: xs)

= let val (y :: ys, r) = walk (n-2, xs)

in (ys, (x, y) :: r)

end

val (nil, r) = walk (n, xs)

in r

end

Applying cnv halves to [0,1,2,3,4,5,6,7,8,9] and 10, for example, yields [(0,9),

(1,8),(2,7),(3,6),(4,5)] in five recursive calls. The idea applies directly to defin-
ing another function computing Catalan numbers using course-of-values induction,
with half as many calls to walk in cat. We leave this definition as an exercise for
the reader.

6 Detecting palindromes

A list L is a palindrome if it is the concatenation of a list and of its reverse, with
possibly an element in between if the length of L is odd. To detect whether a list
is a palindrome, given its length, we can just traverse half of the list at call time
and traverse the other half at return time, as in cnv halves in Section 5. But what
if we do not know its length?

9



Actually, we do not need to know the length of a list to reach its middle if we
use two pointers—one going twice as fast as the other, as in the tortoise-and-hare
algorithm for detecting circularities [17, Section 15.2]. Eventually, the fast one
either points to the empty list or it points to a list whose tail is the empty list.
The slow one then points to the middle of the list.

Once we have reached the middle of the list, we can return the second half of
the list and use the chain of returns to traverse it, incrementally comparing each of
its elements with the corresponding element from the first half. There is no need
to test for the end of the list, since by construction, there are precisely enough
returns to scan both halves of the input list. Using CPS, the returns manifest
themselves as a function traversing a list, i.e., as a list iterator.

6.1 A CPS solution

(* pal_c : ’’a list -> bool *)

fun pal_c xs

= let (* walk : ’’a list * ’’a list * (’’a list -> bool) -> bool *)

fun walk (xs1, nil, k)

= k xs1 (* even length *)

| walk (_ :: xs1, _ :: nil, k)

= k xs1 (* odd length *)

| walk (x :: xs1, _ :: _ :: xs2, k)

= walk (xs1, xs2, fn (y :: ys) => x = y andalso k ys)

in walk (xs, xs, fn nil => true)

end

The local function walk is passed the input list twice and an initial continuation,
and it traverses the list recursively. For the i-th call to walk (starting at 0), the
three arguments are the i-th tail of the input list, the 2i-th tail, and a continuation.
Eventually, the continuation is applied to the second half of the input list, which is
of length n if the input list is of length 2n or 2n + 1. The continuation of the i-th
call is only invoked if listing the n − i right-most elements of the first half of the
input list and the n− i left-most elements of the second half forms a palindrome.

The continuation of walk is a list iterator for scanning the second half of the
input list. This iterator either completes the traversal and yields true, or it aborts
and yields false. It is not used linearly and therefore writing this program in
direct style requires a control operator [7]. In the following direct-style solution,
we choose to use a local exception. (Instead of a local exception, we could use the
option data type.)

6.2 A direct-style solution

(* pal_d : ’’a list -> bool *)

fun pal_d xs0

= let exception FALSE

(* walk : ’’a list * ’’a list -> ’’a list *)

fun walk (xs1, nil)

= xs1 (* even length *)

10



| walk (_ :: xs1, _ :: nil)

= xs1 (* odd length *)

| walk (x :: xs1, _ :: _ :: xs2)

= let val (y :: ys) = walk (xs1, xs2)

in if x = y

then ys

else raise FALSE

end

val nil = walk (xs0, xs0)

in true

end handle FALSE => false

The local function walk is passed the input list twice and traverses the list recur-
sively. For the i-th call to walk (starting at 0), the two arguments are the i-th
tail of the input list and the 2i-th tail. Eventually, the second half of the input
list, which is of length n, is returned. Each i-th call returns normally if listing the
n− i right-most elements of the first half of the input list and the n− i left-most
elements of the second half forms a palindrome. Otherwise the computation aborts
and yields false.

This direct-style version demonstrates that one can detect whether a list is a
palindrome in one traversal, with no list reversal, and using no other space than
what is provided by a traditional control stack—a solution that is more efficient
than the traditional solutions from transformational programming [14, Example 3].
Specifically, if a list has length m, Pettorossi and Proietti count 2m hd-operations,
2m tl-operations, m cons-operations, and m closures both for their solution [13,
Section 2, page 410] and for Bird’s solution [2]. In contrast, our solution requires
m hd-operations if m is even and m − 1 if m is odd, 2m tl-operations, 0 cons-
operations, and 0 closures. On the other hand, the auxiliary data in Pettorossi
and Proietti’s solution and in Bird’s solution could all be allocated in one region
and deallocated at once upon completion of the computation [18].

6.3 Variations

For the same number of operations, we could halve the number of recursive calls by
using four pointers instead of two to traverse the putative palindrome. We could
even halve it further by using eight pointers, etc.

Using three pointers, we could also recognize 3-palindromes (i.e., the concate-
nation of three occurrences of a list of length n or of its reverse) in n recursive calls.
And using m pointers, we could recognize m-palindromes (i.e., the concatenation
of m occurrences of a list of length n or of its reverse) in n recursive calls and no
auxiliary list, for any given m.

7 Traversing binary trees

We now present some examples where binary trees are traversed using the TABA
programming pattern. We first traverse a tree at call time and a list at return time
(Section 7.1), and next a list at call time and a tree at return time (Section 7.2).

11



It is then simple to write a function that traverses a tree at call time and another
tree at return time.

We use labelled binary trees:

datatype ’a tree = LEAF

| NODE of ’a tree * ’a * ’a tree

7.1 Traversing a tree at call time

Labelling a tree in infix order or in postfix order illustrates the TABA programming
pattern since it requires traversing this tree at call time and the list of labels at
return time (we assume this list to be long enough):

(* label_infix : ’a tree * ’b list -> ’b tree *)

fun label_infix (t, labels)

= let (* visit : ’a tree * ’b list -> (’a * ’b) tree * ’b list *)

fun visit (LEAF, labels)

= (LEAF, labels)

| visit (NODE (t1, v, t2), labels)

= let val (t1’, label :: remaining_labels1)

= visit (t1, labels)

val (t2’, remaining_labels2)

= visit (t2, remaining_labels1)

in (NODE (t1’, (v, label), t2’), remaining_labels2)

end

val (t’, labels’) = visit (t, labels)

in t’

end

The list is traversed every time visit returns from a left subtree. To label a tree
in postfix order, the list would be traversed every time visit returned from a right
subtree. (In contrast, to label a tree in prefix order, the list would be traversed
every time visit is called on a node, and therefore this classical tree traversal does
not illustrate the TABA programming pattern.)

7.2 Traversing a tree at return time

The following data type specifies directions for traversing a binary tree:

datatype direction = LEFT

| RIGHT

The following function is given a tree of at least depth n and a list of n directions
in reverse order ; it returns the corresponding list of node attributes from inside
the tree to its root:

(* traverse : ’a tree * direction list -> ’a list *)

fun traverse (t, ds)

= let (* visit : ’a tree * ’a list * direction list -> ’a list *)

fun visit (_, nil, vs)

= vs

12



| visit (NODE (t, v, _), LEFT :: ds, vs)

= visit (t, ds, v :: vs)

| visit (NODE (_, v, t), RIGHT :: ds, vs)

= visit (t, ds, v :: vs)

in visit (t, rev ds, nil)

end

This function reverses the list of directions and iteratively traverses it. According
to the directions, it traverses the tree iteratively and accumulates the resulting list
of node attributes.

For example, given a tree

1

• 2

3 •

4 •

5 •

• •

and a list [LEFT, LEFT, LEFT, RIGHT], traverse yields [4, 3, 2, 1].
Instead of reversing the list of directions, a TABA-based function traverses it

recursively at call time and then traverses the tree at return time, accumulating
the resulting list of node attributes:

(* traverse_taba : ’a tree * direction list -> ’a list *)

fun traverse_taba (t, ds)

= let (* visit : direction list -> ’a tree * ’a list *)

fun visit nil

= (t, nil)

| visit (LEFT :: ds)

= let val (NODE (t, v, _), vs) = visit ds

in (t, v :: vs)

end

| visit (RIGHT :: ds)

= let val (NODE (_, v, t), vs) = visit ds

in (t, v :: vs)

end

val (_, vs) = visit ds

in vs

end

13



Perhaps more succinctly, one can use foldr:

(* foldr : (’a * ’b -> ’b) * ’b -> ’a list -> ’b *)

fun foldr (f, b)

= let (* visit : ’a list -> ’b *)

fun visit nil

= b

| visit (x :: xs)

= f (x, visit xs)

in visit

end

(* traverse_taba_with_foldr : ’a tree * direction list -> ’a list *)

fun traverse_taba_with_foldr (t, ds)

= let (* back_again : direction * (’a tree * ’a list)

-> ’a tree * ’a list *)

fun back_again (LEFT, (NODE (t, v, _), vs))

= (t, v :: vs)

| back_again (RIGHT, (NODE (_, v, t), vs))

= (t, v :: vs)

val (_, vs) = foldr (back_again, (t, nil)) ds

in vs

end

The order of the traversal (i.e., whether to go left or right in the tree) is inherited
at call time, since it solely depends on the list of directions. It could also be
synthesized at return time if it depended on an intermediate result.

8 Conclusion

The TABA programming pattern stems from the observation that traversing a
data structure recursively provides enough computing power to traverse another
data structure iteratively, at return time. This second traversal can be either
implicit in direct style or explicit in continuation-passing style, taking the form of
an iterator.

In this article, we have illustrated the TABA programming pattern. When
convolving two lists, we have avoided constructing an intermediate list for the
sole purpose of traversing it later on, and we have shown that this design scales
for multiplying polynomials. When detecting palindromes, we have also avoided
constructing an intermediate list for the sole purpose of traversing it. This last
example has led us to a new solution for the traditional palindrome problem. We
have also illustrated how other data structures than lists can be traversed at call
time as well as at return time.

Acknowledgments: We want to thank all the functional programmers and im-
plicit computational complexity theorists whom we subjected to the examples pre-
sented here. We are also grateful to Mads Sig Ager, Ma lgorzata Biernacka, Patricia

14



Johann, Julia L. Lawall, Kevin Millikin, Henning Korsholm Rohde, Michael Sper-
ber, and the anonymous reviewers for comments.

This work is partially supported by the ESPRIT Working Group APPSEM
(http://www.appsem.org) and by the Danish Natural Science Research Council,
Grant no. 21-03-0545.

References

[1] Ma lgorzata Biernacka, Dariusz Biernacki, and Olivier Danvy. An operational
foundation for delimited continuations in the CPS hierarchy. Technical Re-
port BRICS RS-04-29, DAIMI, Department of Computer Science, University
of Aarhus, Aarhus, Denmark, December 2004. A preliminary version was pre-
sented at the the Fourth ACM SIGPLAN Workshop on Continuations (CW
2004).

[2] Richard S. Bird. Using circular programs to eliminate multiple traversals of
data. Acta Informatica, 21:239–250, 1984.

[3] William H. Burge. Recursive Programming Techniques. Addison-Wesley, 1975.

[4] Olivier Danvy. On listing list prefixes. LISP Pointers, 2(3-4):42–46, January
1989.

[5] Olivier Danvy and Andrzej Filinski. Representing control, a study of the CPS
transformation. Mathematical Structures in Computer Science, 2(4):361–391,
1992.

[6] Olivier Danvy and Mayer Goldberg. There and back again. In Simon Peyton
Jones, editor, Proceedings of the 2002 ACM SIGPLAN International Confer-
ence on Functional Programming, SIGPLAN Notices, Vol. 37, No. 9, pages
230–234, Pittsburgh, Pennsylvania, September 2002. ACM Press.

[7] Olivier Danvy and Julia L. Lawall. Back to direct style II: First-class contin-
uations. In William Clinger, editor, Proceedings of the 1992 ACM Conference
on Lisp and Functional Programming, LISP Pointers, Vol. V, No. 1, pages
299–310, San Francisco, California, June 1992. ACM Press.

[8] Olivier Danvy and Lasse R. Nielsen. Defunctionalization at work. In Har-
ald Søndergaard, editor, Proceedings of the Third International ACM SIG-
PLAN Conference on Principles and Practice of Declarative Programming
(PPDP’01), pages 162–174, Firenze, Italy, September 2001. ACM Press. Ex-
tended version available as the technical report BRICS RS-01-23.

[9] Andrew J. Gill, John Launchbury, and Simon L. Peyton Jones. A short cut
to deforestation. In Arvind, editor, Proceedings of the Sixth ACM Confer-
ence on Functional Programming and Computer Architecture, pages 223–232,
Copenhagen, Denmark, June 1993. ACM Press.

[10] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Math-
ematics. Addison-Wesley, 1989.

15



[11] Torben Æ. Mogensen. Glossary for partial evaluation and related topics.
Higher-Order and Symbolic Computation, 13(4):355–368, 2000.

[12] Alberto Pettorossi. Program development using lambda abstraction. In Ke-
sav V. Nori, editor, Foundations of Software Technology and Theoretical Com-
puter Science, Seventh Conference, number 287 in Lecture Notes in Computer
Science, pages 420–434, Pune, India, December 1987. Springer-Verlag.

[13] Alberto Pettorossi and Maurizio Proietti. Importing and exporting informa-
tion in program development. In Dines Bjørner, Andrei P. Ershov, and Neil D.
Jones, editors, Partial Evaluation and Mixed Computation, pages 405–425.
North-Holland, 1988.

[14] Alberto Pettorossi and Maurizio Proietti. A comparative revisitation of some
program transformation techniques. In Olivier Danvy, Robert Glück, and
Peter Thiemann, editors, Partial Evaluation, number 1110 in Lecture Notes
in Computer Science, pages 355–385, Dagstuhl, Germany, February 1996.
Springer-Verlag.

[15] John C. Reynolds. Definitional interpreters for higher-order programming
languages. Higher-Order and Symbolic Computation, 11(4):363–397, 1998.
Reprinted from the proceedings of the 25th ACM National Conference (1972),
with a foreword.

[16] Jagadguru Swāmı̄ Śr̄ı Bhārat̄ı Kr.s.na Tı̄rthaj̄ı Mahārāja. Vedic Mathematics.
Motilal Banarsidass Publishers Private Limited, 1992.

[17] Guy L. Steele Jr. Common Lisp: The Language. Digital Press, 1984.

[18] Mads Tofte, Lars Birkedal, Martin Elsman, and Nils Hallenberg. A retro-
spective on region-based memory management. Higher-Order and Symbolic
Computation, 17(3):245–265, 2004.

[19] Philip Wadler. Deforestation: Transforming programs to eliminate trees. The-
oretical Computer Science, 73(2):231–248, 1989.

[20] Mitchell Wand. Continuation-based program transformation strategies. Jour-
nal of the ACM, 27(1):164–180, January 1980.

[21] Hongwei Xi and Frank Pfenning. Dependent types in practical programming.
In Alex Aiken, editor, Proceedings of the Twenty-Sixth Annual ACM Sympo-
sium on Principles of Programming Languages, pages 214–227, San Antonio,
Texas, January 1999. ACM Press.

16



Recent BRICS Report Series Publications

RS-05-3 Olivier Danvy and Mayer Goldberg. There and Back Again.
January 2005. iii+16 pp. Extended version of an article to
appear in Fundamenta Informatica. This version supersedes
BRICS RS-02-12.

RS-05-2 Dariusz Biernacki and Olivier Danvy. On the Dynamic Extent
of Delimited Continuations. January 2005. ii+30 pp.

RS-05-1 Mayer Goldberg. On the Recursive Enumerability of Fixed-
Point Combinators. January 2005. 7 pp. Superseedes BRICS
report RS-04-25.

RS-04-41 Olivier Danvy.Sur un Exemple de Patrick Greussay. December
2004. 14 pp.

RS-04-40 Mads Sig Ager, Olivier Danvy, and Henning Korsholm Rohde.
Fast Partial Evaluation of Pattern Matching in Strings. Decem-
ber 2004. 22 pp. To appear in TOPLAS. Supersedes BRICS
report RS-03-20.

RS-04-39 Olivier Danvy and Lasse R. Nielsen.CPS Transformation of
Beta-Redexes. December 2004. ii+11 pp. Superseedes an article
to appear in Information Processing Lettersand BRICS report
RS-00-35.

RS-04-38 Olin Shivers and Mitchell Wand. Bottom-Upβ-Substitution:
Uplinks andλ-DAGs. December 2004.

RS-04-37 Jørgen Iversen and Peter D. Mosses.Constructive Action Se-
mantics for Core ML. December 2004. 68 pp. To appear in a
specialLanguage Definitions and Tool Generationissue of the
journal IEE Proceedings Software.

RS-04-36 Mark van den Brand, Jørgen Iversen, and Peter D. Mosses.
An Action Environment. December 2004. 27 pp. Appears in
Hedin and Van Wyk, editors, Fourth ACM SIGPLAN Workshop
on Language Descriptions, Tools and Applications, LDTA ’04,
2004, pages 149–168.

RS-04-35 Jørgen Iversen.Type Checking Semantic Functions in ASDF.
December 2004.

RS-04-34 Anders Møller and Michael I. Schwartzbach. The Design
Space of Type Checkers for XML Transformation Languages.
December 2004. 21 pp. Appears in Eiter and Libkin, editors,
Database Theory: 10th International Conference, ICDT ’05
Proceedings, LNCS 3363, 2005, pages 17–36.


