Perfect Hiding and Perfect Binding Universally Composable Commitment
Schemes with Constant Expansion Factor
Ivan B. Damgård
October 2001 |
Abstract:
Canetti and Fischlin have recently proposed the security notion
universal composability for commitment schemes and provided two
examples. This new notion is very strong. It guarantees that security is
maintained even when an unbounded number of copies of the scheme are running
concurrently, also it guarantees non-malleability, resilience to selective
decommitment, and security against adaptive adversaries. Both of their
schemes uses bits to commit to one bit and can be based on the
existence of trapdoor commitments and non-malleable encryption.
We present new universally composable commitment schemes based on the Paillier cryptosystem and the Okamoto-Uchiyama cryptosystem. The schemes are efficient: to commit to bits, they use a constant number of modular exponentiations and communicates bits. Further more the scheme can be instantiated in either perfectly hiding or perfectly binding versions. These are the first schemes to show that constant expansion factor, perfect hiding, and perfect binding can be obtained for universally composable commitments. We also show how the schemes can be applied to do efficient zero-knowledge proofs of knowledge that are universally composable Available as PostScript, PDF, DVI. |