CPS Transformation of Flow Information, Part II: Administrative
Reductions
Daniel Damian
August 2002 |
Abstract:
We characterize the impact of a linear -reduction on the
result of a control-flow analysis. (By ``a linear -reduction'' we mean
the -reduction of a linear -abstraction, i.e., of a
-abstraction whose parameter occurs exactly once in its
body.)
As a corollary, we consider the administrative reductions of a Plotkin-style transformation into continuation-passing style (CPS), and how they affect the result of a constraint-based control-flow analysis and, in particular, the least element in the space of solutions. We show that administrative reductions preserve the least solution. Preservation of least solutions solves a problem that was left open in Palsberg and Wand's article ``CPS Transformation of Flow Information.'' Together, Palsberg and Wand's article and the present article show how to map in linear time the least solution of the flow constraints of a program into the least solution of the flow constraints of the CPS counterpart of this program, after administrative reductions. Furthermore, we show how to CPS transform control-flow information in one pass Available as PostScript, PDF, DVI. |