| Zero-Knowledge Proofs for Finite Field Arithmetic or: Can Zero-Knowledge
  be for Free? Ronald Cramer  November 1997 | 
| Abstract:We present zero-knowledge proofs and arguments for arithmetic
  circuits over finite prime fields, namely given a circuit, show in
  zero-knowledge that inputs can be selected leading to a given output. For a
  field GF(q), where q is an n-bit prime, a circuit of size O(n), and
  error probability  Variations of the technique behind these protocols lead to other
  interesting applications. We first look at the Boolean Circuit Satisfiability
  problem and give zero-knowledge proofs and arguments for a circuit of size
  n and error probability  As a second application, we show that Shamirs (Shens) interactive proof system for the (IP-complete) QBF problem can be transformed to a zero-knowledge proof system with the same asymptotic communication complexity and number of rounds. The security of our protocols can be based on any one-way group homomorphism with a particular set of properties. We give examples of special assumptions sufficient for this, including: the RSA assumption, hardness of discrete log in a prime order group, and polynomial security of Diffie-Hellman encryption. We note that the constants involved in our asymptotic complexities are small enough for our protocols to be practical with realistic choices of parameters Available as PostScript, PDF, DVI. |